ooooooooo

&
Q,{?&k L | The ClusterChimps Guide

e to integrating

CUDA and GNU Autotools

By
| 3&; 9 Dr. Zaius
A6} =
. T =
WA =

Copyright © ClusterChimps.org 2011
(Why ClusterChimps...? ClusterMonkey was taken!)
All rights reserved

This guide is intended to help developers who are familiar with the GNU build system to incorporate
applications written in Nvidia’s “C for CUDA” into their Autotools builds. We will briefly describe the
changes necessary to each file and provide you with an example tarball that illustrates building stand
alone CUDA based applications as well as CUDA shared and static libraries. This guide is NOT intended to
be useful to people completely unfamiliar with the GNU build system.

About ClusterChimps.org

ClusterChimps is dedicated to helping bring inexpensive supercomputing to the masses by leveraging
emerging technologies coupled with bright ideas and open source software. We do this because we
believe it will help advance computation intensive research areas including basic research, engineering,
earth science, biology, materials science, and alternative energy research just to name a few.

About the Author

Dr. Zaius is a well renowned orangutan in the
field of cluster computing and GPGPU
programming. He has spent most of his career in
the financial industry working at exchanges,
investment banks, and hedge funds. He is
currently the driving force behind the site
ClusterChimps.org. Originally from the island of
Borneo, Dr. Zaius now resides in New York City
with his wife and 3 children. He can be reached

at zaius@clusterchimps.org

l1|Page

Table of Contents

INtPoduCtioN.....coeeeerrererneniieiiiiiiirrernrnnnecesnenerreennnnnnsssessesssnnens 2
AUTOTOOIS 1vvvvvvvssssssssssssssssssssssssssssssssssssisss 3
AULOMGKE covvvvrnsrrrsssnssssnssssssssssssnssssssssssssssnsssees 3
LIROO! «.vvvrrvsvererssssssssssssssnnnsssssssssssssssssssssssnssssssssssssssssssssssssssssnssnssssee 3
BUIIING + INSHQIING..rrrrrrrrrrrrrrrrss t
A SIMPlE EXQIPIE ..cossrvvereererrrsses t

Adding CUDA SUPPOrt.....ccccvrurirriicirnnreriicinenesicsnnnneesscssnnesseessnnnes 3
CONTIGUPELAC oeverrrerresssesesssssssssssssesssssssssssssssesssssesssssssssssssssssssssessssssnesessssessssseessssssessssssessssssssesssnans 7
CUAQUIK s eeevrrrssses 9
CUAGR.PY covrrsssssssssssssmsssssssssssassss s sasss et sasss s st s s s ns s ans s ans s anss e 10
SPC/DINAPY/MAKETTE.AM..orrrssresssssssssmssssssssmsssmsssssss s s s s 13
st/ static-Tibrary/h/MaKEfle.am. . i}
st/ static-Tibrary/maiN/Makefile.af ... msssmsssssssi—; Y
src/ shared-library/lib/Makefile.afM..u..umsmsssmssssssssssssmsssmsssssssmsssmssssss s 16
st/ shared-library/MaiN/MaKETTE.aM ..vuvcmsssmssssssssssssmssssssssssssmsssmssssss s 7

EPIl0..ueiiireriiiinniiiiniiinniisreisnne s sre s e s s naesssnnas 18

l|Page

C 0
Chapter

(&)

Introduction

According to Wikipedia, “The GNU build system, also known as the Autotools, is a suite of
programming tools designed to assist in making source-code packages portable to many Unix-
like systems. It can be difficult to make a software program portable: the C compiler differs
from system to system; certain library functions are missing on some systems; header files may
have different names. One way to handle this is write conditional code, with code blocks
selected by means of preprocessor directives (#ifdef); but because of the wide variety of build
environments this approach quickly becomes unmanageable. The GNU build system is designed
to address this problem more manageably.

The GNU build system is part of the GNU toolchain and is widely used in many free-software
and open-source packages. The tools comprising the GNU build system are free-software-
licensed under the GNU General Public License with special license exceptions permitting use of
the GNU build system with proprietary software.”

If you are building Unix / Linux based software and you want your software to be easily ported
to different flavors of Unix / Linux then Autotools may be for you. | say “may” be for you
because Autotools only provides native support for C, C++, Objective C, and Fortran. If you are
using one of these languages and the portability of your software is important to you then
Autotools is for you. If you don’t care about portability then Autotools might be overkill but
you never know when you are going to need to care about portability. How many times have
you been asked to build something for a single platform and six months later been told that it
has to run on three different platforms? Wouldn’t you rather be well prepared for the future
than have to scramble at the last minute?

2|Page

Autotools

Autotools is comprised of several different tools: Autoconf, Automake, and Libtool. The
Autoconf tool is actually a suite of tools (Autoheader, Automdte, Autoreconf, Autoscan,
Autoupdate, ifnames) whose primary task is to generate a Bourne shell configuration script.
Autoconf is designed in a manner that the configuration script it generates should be able to
run on any Unix-like platform even if Autotools is not installed on that platform. This makes it
particularly useful as a build system for source code packages that are intended for widespread
distribution.

Automake

Writing a makefile is not that complicated, however, makefile users tend to expect a certain
level of functionality from a makefile. For a makefile to be considered complete developers
expect certain make targets to be defined (all, clean, install, uninstall, etc...) as well as certain
features to be configurable (multi-threaded | single-threaded, shared-libs | static-libs, etc...).
Building all of this by hand in a portable manner is tedious and error prone. That’s where
Automake comes in. Automake generates standard makefile templates (Makefile.in) from high-
level specification files (Makefile.am). While Automake expects the Makefile.am to be written
in a higher-level abstraction you can put regular makefile syntax in the Makefile.am as well.
This feature allows you to extend the functionality of the Automake program. We will make
use of this feature to add support for CUDA.

Libtool

A library is a software module that performs some service to users through an API. Libraries
come in two flavors: shared and static. Shared libraries differ from static libraries in that the
object code in a shared library is not linked into the executable. When a binary is linked against
a shared library all that is linked into the binary is the place holder to the shared library.
Another difference between shared and static libraries is that at runtime multiple binaries can
share the same code pages that a shared library occupies in RAM (hence the name “shared”).
Shared libraries provide three main benefits. They reduce the amount of RAM consumed on a
running system, they reduce the amount of disk space consumed by binaries, and they provide
a more flexible software update process.

Building shared libraries is one area where Autotools really comes through for its users. While

most systems have somewhat standardized on shared library implementation details, there is
not much standardization around the building, naming, and management. Libtool provides a

3|Page

set of Autoconf macros that hide library naming differences in makefiles and provides an
optional dynamic loader for your shared libraries.

Building + Installing

Building an Autotools managed source code package is very simple and straight forward. Your
users download your compressed tarball, uncompress it, run configure, and type make install.
That’s it! When you run configure you have the ability to fine tune your build and the
configuration script takes care of platform-specific configurations for you. For example:

zaius> gunzip cuda-example-1.0.tar.gz
zaius> tar -xvf cuda-example-1.0.tar
zaius> cd cuda-example-1.0

zaius> configure

zaius> make all

zaius> make install

The commands above are all you need to do to build and install our Autotools CUDA example
source code package described below.

A Simple Exqmple

As part of this guide we have put together a simple Autotools based example to illustrate how
to enable CUDA support for your Autotools builds. The example contains CUDA based targets
and is named cuda-example-0.0.0.tar.gz. Our example contains a stand alone CUDA binary
(named binaryCuda), a binary that links in a shared library that contains CUDA code (named
binaryCudaShLib), and a binary that links in a static library that contains CUDA code (named
binaryCudaStLib). Each binary is logically identical. They all generate test data and then loop
through calling a CUDA kernel. The difference in the binaries is in their structure. The stand
alone CUDA binary has the source for the CUDA kernel imbedded the same compilation unit as
the programs main. The binary that links in a shared library is built from two separate targets.
The first target is a shared library that contains the CUDA kernel and the second target contains
the main program that generates the test data and makes calls to the shared library. The
binary that links in a static library is identical in structure to the shared library example with the
only difference being that the library is static.

The kernel that we are using for this example is a simple binomial options pricing model that
was borrowed from Nvidia’s CUDA examples. We’re not going to get into the source for the

4|Page

example code because it’s really irrelevant to our discussion, however, we will walk through the
changes that we needed to make to a standard Autotools build to enable CUDA support.

5|Page

a D
Chapter

Adding CUDA Support

The example tarball can be downloaded from http://www.clusterchimps.org/autotools.php.
Once you have downloaded the tarball uncompress it, untar it and take a look at the contents.

zaius> gunzip cuda-example-0.0.0.tar.gz
zaius> tar -xvf cuda-example-0.0.0.tar
zaius> cd cuda-example-0.0.0

zaius> 1s

AUTHORS Makefile.in config.guess cudalt.py src
COPYING NEWS config.sub depcomp
ChangeLog README configure install-sh
INSTALL aclocal.m4 configure.ac ltmain.sh
Makefile.am compile cuda.mk missing

The contents of the directory should look familiar to you. There are two files that are not part
of a standard Autotools build: cuda.mk and cudalt.py. These are new files that we added to
enable CUDA support. We also made changes to the configure.ac file and to the target
Makefile.am files that are in the src directory. In this chapter we will walk you through what
changes we made and why.

6|Page

conﬁsure.qc

The configure.ac file is what Autoconf uses to generate your projects configure script. One of
the functions that the configure script provides is the ability for you to fine tune the
dependencies of the project. If we are building CUDA based applications our project is going to
have a dependency on the CUDA libraries isn’t it? By making use of the AC_ARG_WITH macro
we can provide a default location for our project to find CUDA and allow our users to override
the default location if they chose to install CUDA to a non-standard location. Below we take a
look at the contents of the configure.ac file.

configure.ac

7|Page

There is nothing special with regards to what we have put in our configure.ac file. We set up a
default location for CUDA as well as default values for libraries, linker flags, and the CUDA
compiler. We also allow the user to override the location of CUDA.

8|Page

cuda.mk

As we mentioned earlier Autotools provides native support for C, C++, Objective C, and Fortran.
You will notice that CUDA is not in that list. Somehow we need to tell Autotools (more
specifically Automake) how to deal with .cu files. We mentioned earlier that Automake not
only supports a high-level abstraction language but it also supports standard make syntax. We
can make use of that fact and teach Automake how to handle files with a .cu extension. Below
we take a look at the contents of cuda.mk.

cuda.mk

KCU..O!

$ (NVCC) -gencode=arch=compute 13,code=sm 13 -o $Q@ -c $<

.cu.lo:
$ (top_srcdir) /cudalt.py $@ $(NVCC) \
-gencode=arch=compute 13,code=sm 13 \
-—compiler-options=\"$ (CFLAGS) \
$(DEFAULT_INCLUDES) S (INCLUDES) \
$(AM_CPPFLAGS) S (CPPFLAGS) \" -c $<

AU)

The first rule in this file tells Automake how to build a stand alone CUDA binary (how to
generate a .0 out of a .cu file). The second rule in the file tells Automake how to generate a .lo
out of a .cu file. A .lo file is what is generated by libtool to support shared libraries. The
contents of the .cu.o rule should look familiar to you. It is basically just the flags that you would
pass to nvcc to compile a .cu file (recall that we defined $(NVCC) in our configure.ac file). The
contents of the .cu.lo rule are again just what we would pass to nvcc to create a shared library
with the exception of cudalt.py at the beginning of the rule. The cudalt.py file is a python file
that acts as a libtool script for CUDA which we will cover shortly.

Why are we placing these rules in a file at the top-level of our project? Since we want all of our
CUDA based targets in the entire project to use the same rules we just put them in a file at the
top-level and we include that file in all of our Makefile.am files that are building CUDA targets.
This way we can change the nvcc flags for all of our targets just by updating this one file. What
if you don’t want the same nvcc flags on all of the targets in your project? In that case just
don’t include this file in your targets Makefile.am and put the .cu.o or .cu.lo rules directly in
your targets Makefile.am.

9|Page

cudalt.py

When libtool is used to generate a shared library it does a bit more than just compile your
source. When you type make libtool also produces a .lo file. This file is used by the Automake
system when linking project libraries with binaries. Since libtool doesn’t know anything about
files with a .cu extension we need to have some way of generating our .lo file and compiling our
source. That is were the second rule in our cuda.mk file comes into play. It will call cudalt.py to
compile our .cu file and to generate the necessary .lo file.

cudalt.py

10| Page

11| Page

The cudalt.py file has four main sections. The first section sets up the file names and creates
the necessary sub-directories. The second section compiles the source so that it can be used in
a shared library. The third section compiles the source so that it can be used in a static library
and the last section creates the .lo file that the Automake system needs. Now that we have all
of the plumbing in place let’s take a look at how we make use of the plumbing in our target’s
Makefile.ams.

12| Page

src/binary/Makefile.am

This target is a stand alone CUDA application. By stand alone | mean that the main and kernel
source are in the same target. In this example we will make use of the first make rule that we
defined in the top-level cuda.mk file (the .cu.o rule). Just in case you didn’t memorize the rule
here it is again:

.Cu.o:
$ (NVCC) -gencode=arch=compute 13,code=sm 13 -o $S@ -c $<

If you take a look at the files in the src/binary directory you will find the following:

Makefile.am Makefile.in DbinomialOptions kernel.cu main.cu

The main.cu file actually includes the binomialOptions kernel.cu file so when we
list the sources in the Makefile.am file we need only list main.cu. The contents of the
Makefile.am are:

Makefile.am

//I;clude $(top_srcdir)/cuda.mk \\\\

binaryCuda LINK = $(CC) $(binaryCuda CFLAGS) $(CFLAGS) \
$ (binaryCuda LDFLAGS) $(LDFLAGS) -o $@

bin PROGRAMS
binaryCuda SOURCES
EXTRA DIST

binaryCuda

main.cu

binomialOptions kernel.cu

binaryCuda CFLAGS = $(CUDA CFLAGS)
binaryCuda LDADD = $(CUDA LIBS)

\\;iinarvcuda LDFLAGS S (CUDA LDFLAGS) 4////

The include at the top of the file pulls in our .cu.o0 make rule so that Automake knows how to
compile a .cu file into a .o file. Since we are dealing with .cu files we need to tell Automake how
to link our application. We do that with the binary_ LINK variable. The rest of this file is pretty
normal but make note of the EXTRA_DIST variable. This is necessary so that this file gets
included in a make dist build. Since it is not listed as a SOURCE Automake doesn’t know that it
is important and would not distribute it. Also note the CUDA _ variables were defined earlier in
our configure.ac file.

13| Page

src/stqtic-librqrg/lib/queﬁle.qm

This target is a static library that encapsulates a CUDA kernel. This example will make use of
the first rule that we defined in our top-level cuda.mk file (the .cu.o rule). Again for those of
you who do not possess a photographic memory:

.Cu.o:
$ (NVCC) -gencode=arch=compute 13,code=sm 13 -o $S@ -c $<

If you look in the src/static-library/lib directory you will find the following:

Makefile.am Makefile.in binomialOptions.cu
binomialOptions kernel.cu

The binomialOptions.cu file actually includes the binomialOptions kernel.cu
file so when we list the sources in the Makefile.am file we need only list
binomialOptions.cu. The contents of the Makefile.am are:

Makefile.am

//Z;clude $(top_srcdir)/cuda.mk ‘\\\

LINK = $(CC) -o $@ $(CUDA_LDFLAGS) $(CUDA LIBS)
EXTRA DIST = binomialOptions kernel.cu

lib LIBRARIES = libbopm.a

libbopm a SOURCES = \
binomialOptions.cu

A)

The include at the top pulls in our .cu.0 make rule and since we are dealing with .cu files we
need to tell Autotools how to link with the LINK variable. The EXTRA_DIST is necessary so the
kernel source gets distributed with a make dist build. The rest is just standard Automake usage.

l4|Page

src/ static-library/main/Makefile.am

There is actually nothing at all special about this Makefile.am | am only including it here for
completeness.

Makefile.am

15| Page

src/sbqred-librqrg/lib/queﬁle.qm

This target is a shared library that encapsulates a CUDA kernel. This example will make use of
the second rule that we defined in our top-level cuda.mk file (the .cu.lo rule). Again for those of
you with the attention span of a fruit fly:

.cu.lo:
$ (top srcdir)/cudalt.py $@ $(NVCC) \
-gencode=arch=compute 13,code=sm 13 \
--compiler-options=\" $(CFLAGS) $ (DEFAULT INCLUDES)\
$ (INCLUDES) $(AM_CPPFLAGS) $ (CPPFLAGS) \" -c $<

If you look in the src/shared-library/lib directory you will find the following:

Makefile.am Makefile.in binomialOptions.cu
binomialOptions kernel.cu

The binomialOptions.cu file actually includes the binomialOptions kernel.cu
file so when we list the sources in the Makefile.am file we need only list
binomialOptions.cu. The contents of the Makefile.am are:

Makefile.am

//Z;clude $(top_srcdir)/cuda.mk ‘\\\

LINK = $(LIBTOOL) --mode=link $(CC) -o $Q@ $(CUDA LDFLAGS) \
$ (CUDA_LIBS)
EXTRA DIST = binomialOptions kernel.cu

lib LTLIBRARIES = libbopm.la

libbopm la SOURCES = \

\\\‘ binomialOptions.cu 4///

As before the include at the top pulls in our .cu.lo make rule and since we are dealing with .cu
files we need to tell Autotools how to link with the LINK variable. The EXTRA_DIST is necessary

16 |Page

so the kernel source gets distributed with a make dist build. The rest is just standard libtool
usage.

src/shqred-librorg/min/queﬁle.qm

There is actually nothing at all special about this Makefile.am | am only including it here for
completeness.

Makefile.am

Like | said... nothing to see here. The last piece to the puzzle is in the top-level Makefile.am.
We have added a cudalt.py file to enable libtool like functionality for CUDA libraries but unless
we make a change to the top-level Makefile.am that python file will not be distributed in a
make dist build.

Top-level Makefile.am

That’s it! If you follow these simple guidelines you can distribute your CUDA code using GNU
Autotools.

17| Page

Epilog

| hope you enjoyed the preceding pages and found them informative. If you think you have
found any inaccuracies please drop me a note at zaius@clusterchimps.org. | may not get back

to you immediately (I do have a day job to pay the bills) but | appreciate any and all feedback.

If you would like to be notified of new publications just like us on Facebook. Any updates to all
ClusterChimps tools and publications will posted to our Facebook page. We will be releasing a
publication on how to build and program a Virtual Supercomputer soon so, if vast amounts of
inexpensive computational capacity is something that interests you, be on the lookout for it.

ClusterChimps is dedicated to helping bring inexpensive supercomputing to the masses by
leveraging emerging technologies coupled with bright ideas and open source software. We do
this because we believe it will help advance computation intensive research areas including
basic research, engineering, earth science, biology, materials science, and alternative energy
research just to name a few.

- bpr Zqius

18| Page

