ClusterChimps.org

oclelf
oclcc

oclcrypt

The ClusterChimps Guide
to Offline

OpenCL Compiling and Linking

Copyright © ClusterChimps.org 2011
(Why ClusterChimps...? ClusterMonkey was taken!)
All rights reserved

This book is intended for developers who are writing OpenCL programs. We will introduce you to a suite
of tools named OCLTools that you can use to help streamline your OpenCL development and deployment
process. The first tool (oclcc) is a standalone OpenCL compiler that removes the necessity for you to
compile your OpenCL programs at runtime. The second tool (oclelf) provides the ability to link your
kernel source or prebuilt kernel into your binary to simplify application distribution. The last tool is
oclcrypt which provides DES encryption capabilities to your OpenCL development and deployment
process. Currently OCLTools is only available on Linux and has been tested with Nvidia’s OpenCL
implementation.

Disclaimer: While we discuss products from Nvidia we have no relationship with them other than that of
fanboy.

About ClusterChimps.org

ClusterChimps is dedicated to helping bring inexpensive supercomputing to the masses by leveraging
emerging technologies coupled with bright ideas and open source software. We do this because we
believe it will help advance computation intensive research areas including basic research, engineering,
earth science, biology, materials science, and alternative energy research just to name a few.

About the Author

Dr. Zaius is a well renowned orangutan in the
field of cluster computing and GPGPU
programming. He has spent most of his career in
the financial industry working at exchanges,
investment banks, and hedge funds. He is
currently the driving force behind the site
ClusterChimps.org. Originally from the island of
Borneo, Dr. Zaius now resides in New York City

with his wife and 3 children. He can be reached
at zaius@clusterchimps.org

Table of Contents

INEPOAUKSHON.....vvverrrrrnnssesesssnsnsssssssssssesssssssssasssssseses 2
OCLT00lS PrOIramMe COMPIIGHION...vvvvversses 3
BIUIAING OCLTOOISveveeeceeeersenerssessesssnssssssnsssssssssenees 8
PPEPEGUISHES .ovvvcesssssssmsssssnsssssssssssssssmssssssssssssssssssssmsssssssssssssssssssssssssssssssssssssns 8
BUIIAING 1.vvvvvrerssressssssssssssssssssmsses 10
USQDE EXQMPELS ..cvvvrvvssemssssnsssssssssssssssssssnssssssssssssssssses I
EXQIMPIEN rrrrsss "
EXQIMPIEZ rrrrrsusuuss 7
EXQIMPIES .vvrrrsusuuuusmsss 19
EXQIMPIEY crrrrsrssuususss 2
EXQIMPIBS errrrssuusuuss 24
EXQIMPIEE rrrrrssssusmss 26
OCLTools RefreNnce Guid........uummmmnnncsssssssssssssssens 30
T 30
OCIEI covrreesseersses 32
OCICPYPL covrrcsssrscssssss s Rt 32
Liboctools LlIboch0olSTryYpt..ummmmmmssssmss 33

Chapter

Introdukshon

One of the more interesting features of OpenCL is the runtime compilation aspect of building
and deploying OpenCL applications. By delaying compilation until runtime it is possible for your
application to run on platforms that didn’t even exist when you designed and implemented it.
While this feature can be viewed as a positive thing for certain types of applications it also
carries with it negative consequences for others. Imagine for a moment a company that
designs and implements a computational finance framework in OpenCL. They spend millions of
dollars on development of their models only to be forced to distribute the source code of their
models with their final product. Also consider that the whole reason they used OpenCL in the
first place was to speed up the execution of their models and now they have to tack on
compilation time to their models runtime. To safe guard their intellectual property they are
forced to come up with source code obfuscation routines that tend to have the nasty side effect
of making their runtime compilation process even lengthier.

These are not insurmountable problems but as an OpenCL developer wouldn’t you rather
spend your time focusing on your models rather than focusing on their deployment? Enter
OCLTools. OCLTools is a compact, yet effective, suite of development tools that focus on
solving the issues of OpenCL kernel deployment. OCLTools come with a standalone (offline)
OpenCL compiler called oclcc. With oclcc OpenCL developers now have the flexibility to
precompile their OpenCL kernels, moving the lengthy compilation step from the runtime of
their product back into the development phase of their product. OCLTools also comes with an
OpenCL ELF file generator named oclelf that enables developers to link kernel binaries or
source into their application binary. For developers worried about safeguarding their
intellectual property OCLTools even provides DES encryption with oclcrypt.

2|Page

0CLTools programe Compilation

Before we start getting into the usage of the OCLTools components let’s take a look at the
normal OpenCL program development compilation flow:

Normal Compilation Flow

/ Run Time \ / Compile Time \

N
N

Program "o g+t

@l

Binary

ocltLoadKernelSrc

Kernel
Source

clCreateProgramWithSource

clBuildProgram

clCreateKernel

clEnqueueTask

N / N /

The normal OpenCL program compilation starts off with g++ creating a binary from your

program source. When that binary is run it must first read in your kernel source. It then makes
three OpenCL API calls to build the kernel (clCreateProgramWithSource, clBuildProgram,
clCreateKernel). At this point you have a kernel that is ready to be launched. This approach has
a couple of drawbacks: you must ship the source to your kernel, the time required for
compilation is added to the runtime of your application and the source to your kernel is sitting
in a file system somewhere where it could potentially be modified, deleted or stolen.

3|Page

Now that we have an understanding of the issues involved in OpenCL application deployment
we will take a look at how OCLTools can be used to solve them. Let’s assume that your kernel
compilation time is minimal but you would rather not have to ship your source in the open. In
this case you can employ OCLTools to link your kernel source into your program binary. By
doing this you no longer have to worry about the location or safety of your kernel source. In
this scenario your compilation flow will look like this:

Embedded Source Compilation Flow

/ Run Time \ / Compile Time \

g++

\ 4

Program
Source

oclelf

\ 4

ocltExtractKernels

ocltGetEmbeddedKernelSrc

Program | _
Binary Id

N—

clCreateProgramWithSource

clBuildProgram

clCreateKernel

clEnqueueTask

_ / - /

In this scenario you compile your program source with g++ and use oclelf to create an ELF
binary with the source to your kernel embedded in it. You then use a linker to link the object
files together. When your binary is run you no longer have to read the kernel source from the
file system because it is already embedded in your running binary. To load the embedded
kernel source vyou simply make «calls to ocltExtractKernels() and
ocltGetEmbeddedKernelSrc () (library routines that come with OCLTools) and then
you make your three OpenCL calls to create a runnable kernel (cICreateProgramWithSource,

clBuildProgram, clCreateKernel).

4|Page

What if your kernel compilation time is excessive but you don’t care about your kernel binary
being out in the open? You can use OCLTools to precompile your kernel source eliminating the
lengthy compilation time. In this scenario your compilation flow will look like this:

Precompiled Source Compilation Flow

/ Run Time \ é ™ / Compile Time \
Program

Source \
N—
)

N
« Program 4/

Binary
N—

N
N

Kernel
Source

7~ \/
e N]
Kernel

Binary
N

\

»| oclcc

ocltLoadKernelBin

clCreateProgramWithBinary

clBuildProgram

clCreateKernel

clEnqueueTask

_ / _ /

You still start off by compiling your program source with g++ but now you also compile your
kernel source with oclcc. When your binary is run it must read in the kernel binary produced by
oclcc using ocltLoadKernelBin () (a library routine provided by OCLTools) and make
three OpenCL API calls to produce a runnable kernel. If you have precompiled your kernel
source the OpenCL API calls that you need to make will change somewhat. You now need to

call clCreateProgramWithBinary () instead of clCreateProgramWithSource (
) . Bizarrely enough you still need to make a call to c1BuildProgram() even though you
have precompiled your kernel. According to the OpenCL specification OpenCL implementers
can either compile to an intermediate format (such as PTX assembler in Nvidia’s case) or
compile directly to a binary format capable of executing on the device. This is why you still
need to call c1BuildProgram() even though you precompiled your kernel source.

5|Page

What if your kernel takes a long time to compile and you don’t want to be dependant on having
precompiled kernel binaries laying around at runtime. In this case you use OCLTools to
precompile your kernel source to a binary using oclcc and you link your kernel binary into your
application using oclelf. In this scenario your compilation flow will look like this:

Embedded Precompiled Source Compilation Flow

/ Run Time \ / Compile Time \

N
N

Program
Source

—
N
\/ .

Kernel "

Source |~

/
N
N

Kernel
Binary

—
)

\/ P
Program |~ |d

Binary

N—

\ 4

v

ocltExtractKernels

ocltGetEmbeddedKernelBin

clCreateProgramWithBinary

clBuildProgram

clCreateKernel

clEnqueueTask

N / _ /

In this scenario you use g++ to compile your program source and you use oclcc to precompile

your kernel source. You then use oclelf to embed your precompiled binary into an ELF object
file and your linker finishes up by linking everything into one application binary. When your
binary is run you don’t need to read your kernel in from the file system because it is already
imbedded into your running binary. To load the embedded precompiled kernel you simply
make calls to ocltExtractKernels() and ocltGetEmbeddedKernelBin()
(library routines that come with OCLTools) and then you make your three OpenCL calls to
create a runnable kernel (clCreateProgramWithBinary, clBuildProgram, clCreateKernel).

For developers wishing to safeguard their intellectual property OCLTools helps on this front
also. Even if you use OCLTools to embed your kernel source code into your application binary it

6|Page

would not be that difficult to reverse engineer your kernel source. By simply running the
‘strings’ command on the resulting embedded binary you can extract all strings from it. An
OpenCL developer will quickly be able to recognize the kernel source and can easily extract it.
To guard against this reverse engineering you can make use of OCLTools encryption. In this
scenario your compilation flow will look like this:

Encrypted Embedded Source Compilation Flow

/ Run Time \ / Compile Time \
<l

N—

Program
Source

N—

<
N——]

Kernel >

Source
N— /
N
N

Encrypted
Kernel

_ Source J
i

N
- Program Id

Binary

N—

\ 4

oclcrypt

ocltExtractKernels »(oclelf

ocltGetEmbeddedKernelSrc

ocltDecrypt

A

clCreateProgramWithSource

clBuildProgram

clCreateKernel

clEnqueueTask

N / N /

In this scenario you use g++ to compile your program source and you use OCLTools oclcrypt tool

to encrypt your kernel source. You then use oclelf and a linker to link the encrypted source into
your application binary. When your binary is run you use OCLTools utility routines to extract
your kernel source (ocltExtractKernels ())from your application binary and decrypt it
(ocltDecrypt ()). Then you make your three OpenCL calls to create a runnable kernel
(clCreateProgramWithSource, clBuildProgram, clCreateKernel). Now if you run the “strings”
command on your application binary you will no longer find the kernel source in the output so
extracting the kernel source becomes significantly more difficult.

7|Page

Chapter

Biulding 0CLTools

OCLTools is built using the GNU build system, also known as Autotools, which is a suite of
programming tools designed to assist in making source-code packages portable to many Unix-
like systems. The GNU build system is part of the GNU toolchain and is widely used in many
free-software and open-source packages. The tools comprising the GNU build system are free-
software-licensed under the GNU General Public License with special license exceptions
permitting use of the GNU build system with proprietary software.

The first step in the build process is to download the ocltools tarball (ocltools.tar.gz) from the
ClusterChimps.org website. The gzipped tarball can be found at
http://www.clusterchimps.org/ocltools.html. Once you have downloaded the file uncompress
it:

zaius> gunzip ocltools-1.0.tar.gz

and then extract the source from the tar file:

zaius> tar —-xvf ocltools-1.0.tar

Prerequisites

There are two prerequisites to being able to successfully build the OCLTools package. First you
must have an OpenCL implementation installed on the system that you are building on. We
have specifically avoided dependencies on Nvidia specific headers and libraries, so in theory
OCLTools should work with any OpenCL implementation, however we have only tested against
Nvidia’s OpenCL implementation. You <can find Nvidia’s implementation at
http://developer.nvidia.com/opencl. OCLTools also has a dependency on the boost program

options library so the second prerequisite is having a version of boost installed. If you do not
have boost installed you can download it at http://www.boost.org. We built against boost

8|Page

1.44.1 but any version should do as the program options component has been stable for some
time.

Contents

After you have extracted the source from the tarball take a look at the ocltools-1.0 directory.
You will find the standard Autotools files and 6 directories containing usage examples. The
example directories are provided to illustrate proper usage of OCLTools. Each example is the
same OpenCL program (simple matrix multiplication) just built in a different manner. The
OCLTools compiler, ELF file generator, encryption tool, and utility library all live in the src
directory.

examplel

is a plain vanilla OpenCL build that does not make use of OCLTools... a base line.

example?

shows you how you can use OCLTools to embed the kernel source into your application binary

example3

shows you how you can precompile your kernel source

exampled

shows you how to precompile your source and embed it into your application binary

exampleb

shows you how you can use OCLTools to link multiple kernels into a single binary

example6

shows you how to use oclcrypt to better safeguard your intellectual property with encryption

src/oclelf
generates ELF files containing OpenCL source or precompiled binaries suitable for linking into
an executable

src/oclutil

helper library that simplifies ocltools usage

src/oclcc

offline OpenCL compiler

9|Page

src/oclcrypt
DES encryption tool

Building

To build OCLTools you must first run configure to generate your makefiles. Given the
somewhat inconsistent library naming conventions between different versions of boost, you
may need to change the name of the boost program options library in the configure.ac file to
match what you have installed on your system. If you end up modifying the configure.ac file be
sure to rerun autogen.sh. When you run configure you must provide the installation location
and the location of boost on your system. In my case:

./configure -prefix=/usr/local/ocltools \
-—-with-boostinc=/usr/local/boost/1.44.0/include/boost-1 44 0/ \
--with-boostlib=/usr/local/boost/1.44.0/1ib

At this point just type make install and be sure to add the location that you installed into
to your PATH environment variable.

You will end up with two oclutil libraries in the installation lib directory: libocltoolscrypt.so and
libocltools.so. The first library has dependencies on ssl and the second one does not. OCLTools
relies on ssl for its encryption routines. We provide a version of the library that supports
encryption and one that does not. This way if you don’t want to encrypt your source you don’t
need to have a dependency on libssl.so and all of the baggage that comes with it.

The makefiles in the example directories are not part of the autotools build. These are just
plain ordinary makefiles. You will need to edit each makefile and set install-dir to the location
that you installed OCLTools into. Once you have made this adjustment you will be able to build
the example programs.

10|Page

Chapter

Usage Exaqmpels

This chapter contains simple OCLTools usage examples illustrating the various functionalities
provided by the OCLTools suite of tools.

Exaqmple!

Examplel is a baseline application. The only OCLTools usage that examplel has is in the calls to
ocltGetPlatformId() andocltLoadKernelSource (). Making calls to these
functions simplifies your OpenCL program. It eliminates a bit of mundane coding required to
get a simple OpenCL program up and running. First let’s look at the makefile:

Examplel Makefile

///TPHONY: all ‘\\\

install-dir := [ocltools-installation-directory]
all: examplel

examplel: main.c
gcc -o $Q@ $” -IS$(install-dir)/include -L$(install-dir)/lib -locltools \
-L/usr/1lib64 -10penCL

clean:
i =ik ¥ ,©
rm -f examplel
i =k W, 80w

& v

11|Page

Before you can build this example you need to edit the makefile and replace the “[ocl-tools-
installation-directory]” with the directory that you installed OCLTools into. The host source
code is pretty straight forward:

Examplel main.cpp

// Multiply two matrices A * B = C
#include <stdlib.h>

#include <stdio.h>

#include <math.h>

#include <oclutil.h>

#include <CL/cl.h>

#define WA
#define HA
#define WB
#define HB
#define WC
#define HC 3

#define TRUE 1

w W w w w

// Initializes a matrix with random float entries.
void randomInit (float* data, int size)

{

imE i
fene (i = 0p i £ Silz=g)
data[i] = rand() / (float)RAND MAX;

}

L1177 70 0000077777777 7777 777777777777 7777777777777777777777
// Program main
L1177 0 0000077777777/ 77777777777
1mE
main (int argc, char** argv)
{

// set seed for rand()

srand (2006) ;

// 1. allocate host memory for matrices A and B
ime gilze A = WA * RAg

imEe mem gize A = gilzeot (Eleat) * gize Ag

tleat® In A (float*) malloc (mem size A);

ime gilze 1B = WE = RiEg
imEe mem Size 1B = gilzeot (fleat) * size Bg
tleat® Im B = (fleat®) mallee (mem gize 1) g

12|Page

13|Page

// Initialize OpenCL
cl platform id cpPlatform;

errcode = ocltGetPlatformID (&cpPlatform, "NVIDIA");
checkError (errcode, CL_ SUCCESS) ;

// Get a GPU device

errcode = clGetDevicelDs (cpPlatform, CL DEVICE TYPE GPU, 1, &cdDevice,
NULL) ;

checkError (errcode, CL_ SUCCESS) ;

clGPUContext = clCreateContext (0, 1, &cdDevice, NULL, NULL, &errcode):;
checkError (errcode, CL_SUCCESS) ;

//Create a command-queue

clCommandQue = clCreateCommandQueue (c1GPUContext, cdDevice, 0,
&errcode) ;

checkError (errcode, CL_SUCCESS) ;

// Setup device memory
d C = clCreateBuffer (clGPUContext, CL MEM READ WRITE, mem size A, NULL,
&errcode) ;
d A = clCreateBuffer (clGPUContext, CL MEM READ WRITE |
CL MEM COPY HOST PTR, mem size A, h A, &errcode);
d B = clCreateBuffer (clGPUContext, CL MEM READ WRITE |
CL MEM COPY HOST PTR, mem size B, h B, &errcode);

// 6. Load and build OpenCL kernel

char *clMatrixMul =
ocltLoadKernelSrc (" [/location/of/kernel/matrixMul.cl]",
&kernellength) ;

checkError (clMatrixMul != NULL, TRUE);

clProgram = clCreateProgramWithSource (c1GPUContext, 1, (const char **)
&clMatrixMul, &ékernellength, &errcode);
checkError (errcode, CL_ SUCCESS) ;

errcode = clBuildProgram(clProgram, 0O, NULL, NULL, NULL, NULL);
checkError (errcode, CL_ SUCCESS) ;

clKernel = clCreateKernel (clProgram, "matrixMul", &errcode);
checkError (errcode, CL_ SUCCESS) ;

// 7. Launch OpenCL kernel
size t localWorkSize[2], globalWorkSize[2];

14|Page

int wA = WA;
int wC = WC;

errcode = clSetKernelArg(clKernel,O,sizeof (cl mem), (void *)&d C);

errcode |= clSetKernelArg(clKernel,1l,sizeof (cl mem), (void *)&d A);

errcode |= clSetKernelArg(clKernel,2,sizeof (cl mem), (void *)&d B);

errcode |= clSetKernelArg(clKernel,3,sizeof (int), (void *) &wh) ;

errcode |= clSetKernelArg(clKernel,4,sizeof (int), (void *) &wC) ;

checkError (errcode, CL_SUCCESS) ;

localWorkSize[0] = 3;

localWorkSize([l] = 3;

globalWorkSize[0] = 3;

globalWorkSize[l] = 3;

errcode = clEnqueueNDRangeKernel (clCommandQue, clKernel, 2, NULL,
globalWorkSize, localWorkSize, 0, NULL, NULL);

checkError (errcode, CL_SUCCESS) ;

// 8. Retrieve result from device

errcode = clEnqueueReadBuffer (clCommandQue, d C, CL TRUE, O,

mem size C, h C, 0, NULL, NULL);
checkError (errcode, CL_ SUCCESS) ;

// 9. print out the results
printf ("\n\nMatrix C (Results)\n");

iefeye (= (07 Al = SllzEl ©F alar))
{
pEimEE (YEE Y, I €[i]) s
if(((1 + 1) % WC) == 0) printf("\n");

}
printf ("\n") ;

// 10. clean up memory
free (ln_A) g ifree(h B) g free(ln_C) g

clReleaseMemObject (d A) ;

clReleaseMemObject (d C) ;

clReleaseMemObject (d_B) ;
free(clMatrixMul) ;

clReleaseContext (c1GPUContext) ;
clReleaseKernel (clKernel) ;
clReleaseProgram(clProgram) ;
clReleaseCommandQueue (clCommandQue) ;

15|Page

As you can see from the source this is a pretty standard OpenCL host program. There are,
however, two differences. The first is the call to oc1tGetPlatfromId (), which searches
through all of the OpenCL platforms installed on your system and returns the one with a
CL_PLATFORM_NAME that matches “NVIDIA”. The second difference is the call to
ocltLoadKernelSrc () which does all of the mundane file 10 to read in the kernel. In
order to successfully run the example you will need to edit the location of the kernel source in
the call to ocltLoadKernelSrc(). The kernel itself is a trivial matrix multiplication
kernel that you have probably seen a hundred times.

Examplel Kernel

// kernel.cl
// Multiply two matrices A * B = C
// Device code.

// OpenCL Kernel

__kernel void

matrixMul (_ global float* C,
__global float* A,
__ glebal fleat® B,
int wA, int wB)

// 2D Thread ID
ime tx = get lecal icl(0) g
ime ty = get_ lecal iel(ll) g

// value stores the element

// that is computed by the thread

float value = 0;

for (int k = 0; k < wA; ++k)

{
float elementA = Aty * wA + k];
float elementB = B[k * wB + tx];
value += elementA * elementB;

// Write the matrix to device memory each
// thread writes one element
Clty * wA + tx] = value;

16 |Page

When you make the necessary changes in the Makefile and main.c and type make you should
get a binary. When you run it you should see something like:

zaius> examplel

Matrix A

0.389147 0.108601 0.087847
0.112299 0.136472 0.945850
0.178413 0.288748 0.291875

Matrix B

0.821486 0.459928 0.748167
0.999626 0.830676 0.648438
0.009072 0.794227 0.115912

Matrix C (Results)

0.429036 0.338962 0.371751
0.237254 0.916234 0.282148
0.437851 0.553728 0.354549

Example2

Example2 shows you how you can use OCLTools to embed the source to your kernel into your
application binary. Doing this only requires two simple changes to the files in examplel. First
you need to make a couple of changes to your Makefile.

Example2 Makefile

/.PHONY: all \

install-dir := [ocltools-installation-directory]
all: example?2

example2: main.cpp matrixMul.o
g++ -o $Q@ $” -IS(install-dir)/include -L$(install-dir)/lib -locltools \
-L/usr/1lib64 -10penCL

matrixMul.o: matrixMul.cl
$ (install-dir) /bin/oclelf $@ $#

clean:

T =1 ¥,
rm -f example?2

\\\\¥ Fm = ¥ 80" 4////

17|Page

In this makefile we use oclelf to create an ELF formatted object file that contains the source to
your OpenCL kernel. We add the matrixMul.o to the example2 target so that it will be linked
into the example2 binary by g++. Make note of the naming convention used with the OpenCL
kernel. We made the name of the kernel file match the name of the kernel function housed in
the file. THIS IS IMPORTANT. Let’s take a look at the changes that we need to make to the host
code and you will see why it is important.

Example2 Host Source

// 6. Load and build OpenCL kernel
ocltExtractKernels () ;

gize t LSizag
unsigned char *buffer = ocltGetEmbeddedKernelSrc ("matrixMul", &lSize);

clProgram = clCreateProgramWithSource (c1GPUContext, 1, (const char **)
&buffer, &lSize, &errcode);

errcode = clBuildProgram(clProgram, 0O, NULL, NULL, NULL, NULL);
checkError (errcode, CL_ SUCCESS) ;

clKernel = clCreateKernel (clProgram, "matrixMul", &errcode);
checkError (errcode, CL_ SUCCESS) ;

AV)

The only changes necessary in the host code are in section 6. We add a call to

ocltExtractKernels () which builds a kernel database from the matrixMul.o that was
linked in. This DB is indexed by the name of the OpenCL kernel file in the makefile. We also
need to replace the «call to ocltLoadKernelSrc ()y with a «call to
ocltGetEmbeddedKernelSrc (). We no longer need to load the kernel source from the
file system because it is linked into our application now. When we call
ocltGetEmbeddedKernelSrc () we pass in the name of the kernel file that we want to
load (we could have multiple kernel files linked into the application binary as you will see in
example5). This is why it was important to make the name of the OpenCL kernel source file
match the name of the kernel function inside it. If you happen to have more than one kernel

18|Page

function in the kernel file just use the first one as the file name. Build and run this example and
you should see something similar to:

Zaius> example?

Matrix A

0.389147 0.108601 0.087847
0.112299 0.136472 0.945850
0.178413 0.288748 0.291875

Matrix B

0.821486 0.459928 0.748167
0.999626 0.830676 0.648438
0.009072 0.794227 0.115912

Matrix C (Results)
0.429036 0.338962 0.371751

0.237254 0.916234 0.282148
0.437851 0.553728 0.354549

EqupleB

Example3 uses oclcc to precompile the kernel source. To do this we only need to make a
couple small changes to the host code and the makefile. Let’s start with the makefile:

Example3 Makefile

ﬂHONY: all \

install-dir := [ocltools-installation-directory]

all: example3 matrixMul.ptx

example3: main.cpp
g++ -o $Q@ $° -IS(install-dir)/include -L$(install-dir)/lib -locltools \
-L/usr/1lib64 -10penCL

matrixMul .ptx: matrixMul.cl
$ (install-dir) /bin/oclcc -o $@ --cl-fast-relaxed-math --cl-nv-verbose $#

clean:
i =E ¥ ,©
rm -f example3

Fm = ¥ 80"
\\\\; T =1 W PER 4////

19|Page

We added a new target for matrixMul.ptx that compiles the matrixMul.cl file with oclcc. We
added a couple of OpenCL compiler flags into the mix for no other reason than to show you
how to do it. In this example we are not embedding the precompiled source into the
application binary therefore we did not need to make any changes to the example3 target. The
host code changes are:

Example3 Host Code

// 6. Load and build OpenCL kernel
char *compilerFlags;
gize €t LSizeg
unsigned char *buffer =
ocltLoadKernelBin (" [/location/of/kernel/matrixMul .ptx]",
&compilerFlags, &l1Size);

el _imt Statusg
clProgram = clCreateProgramWithBinary (clGPUContext, 1,
(const cl device id *)&cdDevice, &lSize,
(const unsigned char**)&buffer, &status, &errcode);

errcode = clBuildProgram(clProgram, 0, NULL, compilerFlags, NULL, NULL) ;
checkError (errcode, CL_ SUCCESS) ;

clKernel = clCreateKernel (clProgram, "matrixMul", &errcode);
checkError (errcode, CL_ SUCCESS) ;

In this example we replace the call to ocltLoadKernelSrc() with a call to
ocltLoadKernelBin(). Note that we are no longer passing in the name of the kernel
source file but the name of the precompiled kernel file that is being built by the new target in
the makefile. Now, instead of making a call to c1CreatProgramWithSource (), we
make a call to c1CreateProgramWithBinary(). This is because we are no longer
dealing with OpenCL source but a precompiled binary. You can see that we still need to make a
call to c1BuildProgram() even though we have precompiled the source. We do this
because that is what the OpenCL specification says we need to do. If we omit the
clBuildProgram () call, our application will not run correctly (at least not with Nvidia’s
OpenCL implementation). We also grab the compiler flags out of our precompiled kernel binary

20|Page

so that they can be passed to the c1BuildProgram() call. | don’t believe that this is
actually necessary (at least not with Nvidia’s implementation) because if you run oclcc on the
same kernel source but pass in different compiler flags the ptx assembler that is generated is
different and I'm willing to bet that it doesn’t matter whether we pass the compiler flags into
the call to c1BuildProgram() or not. Since we have no way of knowing this for sure we
pass along the compiler flags just to be safe.

If you build and run the example you will see something like:
zaius> example3

Matrix A

0.389147 0.108601 0.087847
0.112299 0.136472 0.945850
0.178413 0.288748 0.291875

Matrix B

0.821486 0.459928 0.748167
0.999626 0.830676 0.648438
0.009072 0.794227 0.115912

Matrix C (Results)

0.429036 0.338962 0.371751
0.237254 0.916234 0.282148
0.437851 0.553728 0.354549

Exq”lp’é\t

Example4 not only precompiles the kernel source but it links in the resulting kernel binary into
your application binary. Doing this effectively moves the time required to compile your kernel
out of your applications runtime and back into the compilation phase of development. Again,
we only need to make a couple of simple changes to our host code and the makefile. Let’s start
with the makefile:

21|Page

Exampled4 Makefile

- PRIONY g @l

install-dir := [ocltools-installation-directory]
all: exampled

exampled: main.cpp matrixMul.o
g++ -o $Q@ $” -IS(install-dir)/include -L$(install-dir)/lib -locltools \
-L/usr/1lib64 -10penCL

matrixMul .ptx: matrixMul.cl
$ (install-dir) /bin/oclcc -o $@ --cl-fast-relaxed-math --cl-nv-verbose $#

matrixMul.o: matrixMul.ptx
$ (install-dir) /bin/oclelf $@ $#

clean:
il =ik ¥ ,©
rm -f main
i =k W, 80w
TS R Ol

In this example we add a target for matrixMul.ptx that causes matrixMul.cl to be compiled by
oclcc and we add a target for matrixMul.o that causes oclelf to create an ELF object file that
contains the precompiled binary. We also add matrixMul.o to the example4 target so that g++
links in the “.0” file with the embedded precompiled binary into our application. Here are the
minimal changes to the host code that are necessary:

22|Page

Example4 Host Code

// 6. Load and build OpenCL kernel
ocltExtractKernels () ;

gilze €t LSizaeg

char *compilerFlags;

unsigned char *buffer = ocltGetEmbeddedKernelBin ("matrixMul",
&compilerFlags, &lSize);

el _imt Statusg
clProgram = clCreateProgramWithBinary (clGPUContext, 1,
(const cl device id *)&cdDevice, &lSize,
(const unsigned char**)&buffer, &status, &errcode);

errcode = clBuildProgram(clProgram, 0, NULL, compilerFlags, NULL, NULL) ;
checkError (errcode, CL_ SUCCESS) ;

clKernel = clCreateKernel (clProgram, "matrixMul", &errcode);
checkError (errcode, CL_ SUCCESS) ;

The only changes necessary in the host code are in section 6. We add a call to
ocltExtractKernels () which builds a kernel database from the matrixMul.o that was
linked in. This DB is indexed by the name of the OpenCL kernel file in the makefile. We also
need to replace the «call to ocltLoadKernelBin ()y with a «call to
ocltGetEmbeddedKernelBin (). We no longer need to load the kernel source or binary
from the file system because it is now linked into our application. When we call
ocltGetEmbeddedKernelBin () we passin the name of the precompiled kernel file that
we want to load (we could have multiple kernel files linked into the application binary as you
will see in example5). This is why it is important to make the name of the OpenCL kernel source
file match the name of the kernel function inside it. If you happen to have more than one
kernel function in the kernel file just use the first one as the file name. Now instead of making
a call to clCreatProgramWithSource () we make a call to

23|Page

clCreateProgramWithBinary () because we are no longer dealing with OpenCL
source but a precompiled binary. You can see that we still need to make a call to
clBuildProgram() even though we have precompiled the source. We do this because
that is what the OpenCL specification says that we need to. If we omit the
clBuildProgram() call, our application will not run correctly (at least not with Nvidia’s
OpenCL implementation). We also grab the compiler flags out of our precompiled kernel binary
so that they can be passed to the c1BuildProgram() call. If we build and run this
application we get something like:

zaius>

Matrix A

0.389147 0.108601 0.087847
0.112299 0.136472 0.945850
0.178413 0.288748 0.291875

Matrix B

0.821486 0.459928 0.748167
0.999626 0.830676 0.648438
0.009072 0.794227 0.115912

(@]

Matrix C (Results)

0.429036 0.338962 0.371751
0.237254 0.916234 0.282148
0.437851 0.553728 0.354549

Equp|66

Example5 is practically identical to example4 except that example5 links in multiple
precompiled OpenCL kernel files into your application. All we really change here is the
makefile.

Example5 Makefile

//TPHONY: all

install-dir := [ocltools-installation-directory]
all: exampleb

exampleb5: main.cpp kernels.o
g++ -o $Q@ $° -IS(install-dir)/include -L$(install-dir)/lib -locltools \
-L/usr/1lib64 -10penCL

matrixMul .ptx: matrixMul.cl
\\\7$(install—dir)/bin/oclcc -o $@ --cl-fast-relaxed-math --cl-nv-verbose $%

N

v

24|Page

//;;trixMUL.ptx: matrixMUL.cl ‘\\

$ (install-dir) /bin/oclcc -o $@ --cl-fast-relaxed-math --cl-nv-verbose $*

kernels.o: matrixMul.ptx matrixMUL.ptx
$ (install-dir) /bin/oclelf $@ $#

clean:
il =ik ¥ ,©
rm —-f main
TSI AN STO R
i =1 L TR

- v

In this example we add two ptx targets to our makefile. We have the same target from

example4 and a new target that causes the kernel named matrixMUL.cl to be compiled by
oclcc. Open up matricMUL.cl and you will see that the kernel function is named matricMUL but
other than that the file is identical to the matrixMul.cl file. Our kernels.o target causes oclelf to
create an ELF file containing the precompiled kernels from both “.cl” files. The changes to the
example5 target cause g++ to link in the file containing the precompiled kernels to our
application binary.

We don’t need to make any changes to our host code because as you recall our call to
ocltGetEmbeddedKernelBin () passesin the name of the kernel that we are interested
in. Build and run example5 and you will see something like:

zaius>

Matrix A

0.389147 0.108601 0.087847
0.112299 0.136472 0.945850
0.178413 0.288748 0.291875

Matrix B

0.821486 0.459928 0.748167
0.999626 0.830676 0.648438
0.009072 0.794227 0.115912

o

Matrix C (Results)

0.429036 0.338962 0.371751
0.237254 0.916234 0.282148
0.437851 0.553728 0.354549

Edit the host code for example5 and change the code to use the matrixMUL kernel binary
instead of the matrixMul kernel binary. You can do this by changing two lines of code:

25|Page

unsigned char *buffer = ocltGetEmbeddedKernelBin ("matrixMUL",
&compilerFlags, &l1Size);

el _imt Statusg
clProgram = clCreateProgramWithBinary (clGPUContext, 1,
(const cl device id *)&cdDevice, &lSize,

(const unsigned char**)&buffer, &status, &errcode);

errcode = clBuildProgram(clProgram, 0, NULL, compilerFlags, NULL, NULL) ;
checkError (errcode, CL_SUCCESS) ;

clKernel = clCreateKernel (clProgram, "matrixMUL", &errcode);

&)

Now when you build and run the program you will get the same output but you will be running

the matrixMUL kernel instead of the matrixMul kernel.

EqupleG

Example6 explores the cryptography features of OCLTools. This example is conceptually
identical to example2 except that instead of embedding the clear text OpenCL kernel source
code into our application binary we are embedding encrypted OpenCL kernel source into our
application binary. Why would you want to encrypt the embedded source? Well if you go back
to example 2 and run the “strings” command against the example2 binary you will see that the
“strings” command can easily be used to extract the embedded kernel source from your
application binary. After spending considerable resources on developing your kernel models
you may not want someone to be able to reverse engineer your kernels so easily. By making
use of OCLTools encryption routines you can make it significantly more difficult for someone to
steal your intellectual property. | will be the first to admit that OCLTools encryption does not
provide a 100% safeguard against intellectual property theft but it does make it pretty damn
difficult.

To encrypt your embedded kernel source we need to make a couple of changes to our makefile
and to our application host code. Let’s look at the makefile first:

26|Page

Example6 Makefile

- PRIONY g @l

install-dir := [ocltools-installation-directory]
all: exampleb

example6: main.cpp matrixMul.o
g++ -o $Q@ $” -IS(install-dir)/include -L$(install-dir)/lib \
-locltoolscrypt -L/usr/1lib64 -10penCL

matrixMul .crypt: matrixMul.cl
$ (install-dir) /bin/oclcrypt -o $@ -c -k password $*

matrixMul.o: matrixMul.crypt
$(install-dir) /bin/oclelf $@ -c $*

clean:
il =ik ¥ ,@
rm -f exampleb
i =k W, 80w
i =it ¥, @EYPT

In order to encrypt the embedded kernel source we need to add a target to cause our OpenCL
kernel source to be run through oclcrypt. Make note of the key used for the encryption (-k on
the oclcrypt command line) because you will need to make use of this key in your application
source. This key must be eight characters. Instead of passing the clear text kernel source into
oclelf we pass in the encrypted kernel source. Make note of the —c flag on the oclelf command
line. This is necessary for the resulting ELF object file to be created correctly. Also take note of
the change we made to the example6 target. We replaced the dependency on the ocltools
library with a dependency on the ocltoolscrypt library. This is required because the ocltools
library does not include the encryption routines. There is no reason for your applications to
have a dependency on ssl unless you want one.

27|Page

Now let’s take a look at the changes necessary in your application code to decrypt your kernel
source.

Example6 Host Code

// 6. Load and build OpenCL kernel

ocltExtractKernels () ;

gize t LSizeg

unsigned char *buffer = ocltGetEmbeddedKernelSrc ("matrixMul", &lSize);

buffer = (unsigned char *)ocltDecrypt ("password", (char*)buffer,
1Size) ;

clProgram = clCreateProgramWithSource (c1GPUContext, 1, (const char **)
sbuffer, &lSize, &errcode);

errcode = clBuildProgram(clProgram, 0O, NULL, NULL, NULL, NULL);
checkError (errcode, CL_ SUCCESS) ;

We addacallto ocltExtractKernels () to build our kernel database out of the linked in
embedded ELF file. We then make a call to ocltGetEmbeddedKernelSrc () to pull the
kernel source from the database. Since we did not link in clear text kernel source we add an
extra step to decrypt the kernel source by calling ocltDecrypt (). This is where we need
the eight character key that we used in our makefile to encrypt the source. In the case of this
example we used “password” as the key in our makefile so we must use “password” as the key
inourcalltoocltDecrypt ().

If you build and run this example you will get something like:
zaius>

Matrix A

0.389147 0.108601 0.087847

0.112299 0.136472 0.945850
0.178413 0.288748 0.291875

28|Page

Matrix B
0.821486
0.999626
0.009072

Matrix C
0.429036
0.237254
0.437851

0.459928 0.
0.830676 0.
0.794227 0.

(Results)

0.338962 0.
0.916234 0.
0.553728 0.

748167
648438
115912

371751
282148
354549

29|Page

Chapter

0CLTools Refrence Guid

oclee

oclcc 1.0

Copyright (C) 2011 ClusterChimps.org

This software is free (GPLv3). There is NO warranty;not even
for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

This program is a stand alone (offline) OpenCL compiler. It accepts all
OpenCL compiler flags and Nvidia extensions. This compiler is intended to
be used as part of the OCLTools suite of development tools and may not
function

correctly outside of the OCLTools suite of tools.

Usage: oclcc [options] input-file

Options:
-o [--output-file] arg File for compilation output.
-I [--includes] arg Directories to search for headers.
-D [--define] arg Defines a macro.
-—-input-file arg Input file to compile.
--platform arg (=NVIDIA) Platform to compile for

--cl-single-precision-constant Treat floating-point constant as single
precision constant instead of implicitly

30|Page

—--cl-denorms-are-zero

--cl-opt-disable

--cl-strict-aliasing

--cl-mad-enable

--cl-no-signed-zeros

--cl-unsafe-math-optimizations

--cl-finite-math-only

--cl-fast-relaxed-math

--cl-nv-maxrregcount arg

--cl-nv-opt-level arg

--cl-nv-verbose

-w [--warnings-off]

—--Werror

--device-query

converting it to double precision constant.
This is valid only when the double
precision extension is supported. This is
the default if double precision floating-
point is not supported.

This option controls how single precision
and double precision denormalized numbers
are handled.

This option disables all optimizations. The
default is optimizations are enabled.

This option allows the compiler to assume
the strictest aliasing rules.

Allows a * b + ¢ to be replaced by a mad.
This will result in reduced accuracy.

Allow optimizations for floating-point
arithmetic that ignore the signedness of

zero.

Allow optimizations for floating-point
arithmetic that (a) assume that arguments
and results are valid, (b) may violate IEEE
754 standard and (c) may violate the OpenCL
numerical compliance requirements

Allow optimizations for floating-point
arithmetic that assume that arguments and
results are not NaNs or +/- Inf

Sets the optimization options
--cl-finite-math-only and
--cl-unsafe-math-optimizations.

Nvidia specific: The max number of
registers a GPU function can use.

Nvidia specific: optimization level (0-3).

Nvidia specific: turns on verbose build
output.

Turn off warnings.

Turn warnings into errors.

Query OpenCL devices and exit.

3M|Page

--version Print out version info and exit.

--help Produce help message.
Usage:

oclelf outfile [-c] filel [[-c] file2 ...]
Options:

outfile ELF file suitable for linking into your application.
-c Indicates that the next input file is encrypted.

filel Kernel source or binary to embed in ELF file.

oclcl‘gp‘l

oclcrypt 1.0

Copyright (C) 2011 ClusterChimps.org

This software is free (GPLv3). There is NO warranty; not even
for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

This program [En|De]crypts an input file creating an [En|De]crypted output
file. While this encryption is not strong enough to stand up against
crackers it will keep people from poking around your program binaries with
'strings' and pulling out your kernel source.

Usage: crypt [options] input-file

Options:
-k [--key] arg Key for [en/delcryption.
-c [—--crypt] Encryption flag.
-d [—--decrypt] Decryption flag.
-o [--output-file] arg File for crypt output.
-—-input-file arg Input file to crypt.
--version Print out version info and exit.
--help Produce help message.

32|Page

Libocltools [libocltoolscrypt]

The libocltools.so and libocltoolscrypt.so libraries are identical with the exception of the
ocltbecrypt () function. The decrypt function is only present in libocltoolscrypt.so. If you
don’t care about encryption link in libocltools.so which does not have dependencies on ssl and
all of the baggage that comes with it.

cl int ocltGetPlatformID(cl_platform id* clSelectedPlatformID, const char¥*
name)

This function finds the cl_platform_id that matches the name passed in. If it can not find a
cl_platform_id that matches the one requested it will print out a warning and return the zeroth
cl_platform_id. The cl_platform_id is returned via the cl_platform_id pointer that is the first
argument to the function (c1selectedPlatformID). If this function is successful it returns
CL_SUCCESS otherwise it will return an error code.

char* ocltLoadKernelSrc(const char* filename, size_t* length)

This function reads in the source for an OpenCL kernel from the file system. If it can not open
and read the file it will return NULL, otherwise it returns a char* containing the source. It then
sets the value of the length argument to the length of the char* returned.

unsigned char* ocltLoadKernelBin(const char* filename, char** compilerFlags,
size_t* length)

This function reads in an OpenCL kernel binary from the file system. This binary must be
created with oclcc because oclcc will embed the compiler flags used at compilation time into
the binary file it creates. This function extracts the compiler flags (if any) and sets the
compilerFlags argument with them. It also sets the length argument to the length of the kernel
binary. It returns a char* containing the kernel binary. If it can not open the file it returns
NULL.

33|Page

void ocltExtractKernels ()

This function extracts embedded kernels from the object file generated by oclelf that were
linked into the application. If there is a problem with kernel extraction it prints out an error and
exits. If it is successful, it builds an internal DB containing all kernels extracted. The DB is
indexed by the output file name (minus suffix) supplied to oclelf. This function MUST be called
prior to calling ot1tGetEmbeddedKernelBin() Of otltGetEmbededKernelSrc()otherwise
the calls to these functions will fail.

unsigned char* ocltGetEmbeddedKernelBin (char* kernelName,
char** compilerFlags,
size_t* length)

This function queries the internal kernel DB based on the kernelName passed in and returns the
binary. It also sets the compilerFlag argument to match what was passed to oclcc at compile
time. The length argument is set to the length of the binary that is returned. If the kernel can
not be found this function prints an error and returns NULL. Note: You MUST call
ocltExtractKernels () before calling this function.

unsigned char* ocltGetEmbeddedKernelSrc(char* kernelName, size_t* length)

This function queries the internal kernel DB based on the kernelName passed in and returns the
source. The length argument is set to the length of the source that is returned. If the source
can not be found this function prints an error and returns NULL. Note: You MUST call
ocltExtractKernels () before calling this function.

char* ocltDecrypt(char *key, char *kernel, int length)

This function decrypts kernels encrypted by oclcrypt. You must pass in the 8 character key
that you used in your makefile to encrypt the kernel, the encrypted kernel (source | binary)
that you got from either ocltLoadKernelSrc (), ocltLoadKernelBin (),
ocltGetEmbeddedKernelSrc (), Or ocltGetEmbeddedKernelBin (), and the length of the
encrypted kernel (source | binary). This function returns the decrypted kernel.

34|Page

Epilogue

| hope you enjoyed the preceding pages and found them informative. If you think you have
found any inaccuracies please drop me a note at zaius@clusterchimps.org. | may not get back

to you immediately (I do have a day job to pay the bills) but | appreciate any and all feedback.

If you would like to be notified of new releases to OCLTools just follow us on Facebook. Any
updates to all ClusterChimps tools and publications will posted to our Facebook page. We will
be releasing a publication on how to build and program a Virtual Supercomputer soon. If vast
amounts of inexpensive computational capacity is something that interests you, be on the
lookout for it.

ClusterChimps is dedicated to helping bring inexpensive supercomputing to the masses by
leveraging emerging technologies coupled with bright ideas and open source software. We do
this because we believe it will help advance computation intensive research areas including
basic research, engineering, earth science, biology, materials science, and alternative energy
research just to name a few.

Dr. Zaius

35|Page

